Radiation Mapping in Post-Disaster Environments Using an Autonomous Helicopter
نویسندگان
چکیده
Recent events have highlighted the need for unmanned remote sensing in dangerous areas, particularly where structures have collapsed or explosions have occurred, to limit hazards to first responders and increase their efficiency in planning response operations. In the case of the Fukushima nuclear reactor explosion, an unmanned helicopter capable of obtaining overhead images, gathering radiation measurements, and mapping both the structural and radiation content of the environment would have given the response team invaluable data early in the disaster, thereby allowing them to understand the extent of the damage and areas where dangers to personnel existed. With this motivation, the Unmanned Systems Lab at Virginia Tech has developed a remote sensing system for radiation detection and aerial imaging using a 90 kg autonomous helicopter and sensing payloads for the radiation detection and imaging operations. The radiation payload, which is the sensor of focus in this paper, consists of a scintillating type detector with associated software and novel search algorithms to rapidly and effectively map and locate sources of high radiation intensity. By incorporating this sensing technology into an unmanned aerial vehicle system, crucial situational awareness can be gathered about a post-disaster environment and response efforts can be expedited. This paper details the radiation mapping and localization capabilities of this system as well as the testing of the various search algorithms using simulated radiation data. The various components of the system have been flight tested over a several-year period and a new production flight platform has been built to enhance reliability and maintainability. The new system is based on the Aeroscout B1-100 helicopter Remote Sens. 2012, 4 1996 platform, which has a one-hour flight endurance and uses a COFDM radio system that gives the helicopter an effective range of 7 km.
منابع مشابه
Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملAutonomous Flight in Unknown Indoor Environments
This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are already commodities on ground vehicles, air vehicles seeking the same performance face unique challenges. In this paper, we describe the difficulties in achieving fully autonomou...
متن کاملModel Reference Sliding Mode Control of Small Helicopter X.R.B based on Vision
This paper presents autonomous control for indoor small helicopter X.R.B. In case of natural disaster like earthquake, a MAV (Micro Air Vehicle) which can fly autonomously will be very effective for surveying the site and environment in dangerous area or narrow space, where human cannot access safely. In addition, it will be helpful to prevent secondary disaster. This paper describes vision bas...
متن کاملAutonomous Flight in Unstructured and Unknown Indoor Environments
This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are already commodities on ground vehicles, air vehicles seeking the same performance face unique challenges. In this paper, we describe the difficulties in achieving fully autonomou...
متن کاملUnmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment System for Post-disaster Monitoring
This paper presents design strategies of using unmanned aerial vehicles (UAVs) to deploy wireless sensor networks (WSNs) for post-disaster monitoring. Natural disasters are unforeseeable events which cannot be prevented. But some recovery procedures can be followed to minimize their effects. Post-disaster monitoring is important to estimate the effects of disasters, which in turn is used to det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 4 شماره
صفحات -
تاریخ انتشار 2012